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Single-cell multi-omics profiling uncovers the immune
heterogeneity in HIV-infected immunological non-responders
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Summary

Background Immunological non-responders (INRs) are people living with HIV-1 who fail to achieve full immune
reconstitution despite long-term effective antiretroviral therapy (ART). This incomplete recovery of CD4" T cells
increase the risk of opportunistic infections and non-AIDS-related morbidity and mortality. Understanding the
mechanisms driving this immune dysfunction is critical for developing targeted therapies.

Methods We performed single-cell RNA sequencing (scRNA-seq) and single-cell VD] sequencing (scVD]J-seq) on
peripheral blood mononuclear cells (PBMCs) from INRs, immune responders (IRs), and healthy controls (HCs).
We developed scGeneANOVA, a novel mixed model differential gene analysis tool, to detect differentially
expressed genes and pathways. In addition, we developed the Viral Identification and Load Detection Analysis
(VILDA) tool to quantify HIV-1 transcripts and investigate their relationship with interferon (IFN) pathway activation.

Findings Our analysis revealed that INRs exhibit a dysregulated IFN response, closely associated with CD4* T cell
exhaustion and immune recovery failure. The scGeneANOVA tool identified critical genes and pathways that were
missed by traditional analysis methods, while VILDA showed higher levels of HIV-1 transcripts in INRs, which may
drive the heightened IFN response. These findings support a potential contribution of IFN signalling in INR-related
immune dysfunction.

Interpretation Our study provides new insights into the pathogenic mechanisms behind immune recovery failure in
INRs, suggesting that IFN signalling might be involved in the development of CD4" T cell exhaustion. The identi-
fication of key genes and pathways offers potential biomarkers and therapeutic targets for improving immune
recovery in this vulnerable population.
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experiment conduction, data analysis and preparation of the manuscript of this work.
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Introduction the progressive acquired immunodeficiency syndrome
Chronic human immunodeficiency virus type 1 (HIV-1) (AIDS)."? HI_V remains a major global health is_sue,
infection typically leads to the overactivation and func-  affecting millions and causing numerous new infections

tional exhaustion of CD4* T cells, eventually resultingin ~ annually. Antiretroviral therapy (ART) has significantly
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Research in context

Evidence before this study

Immunological non-responders (INRs) are individuals living
with HIV-1 who do not achieve complete immune recovery
despite effective antiretroviral therapy (ART), increasing their
vulnerability to infections and non-AIDS-related conditions.
Previous studies have suggested that chronic immune
activation, particularly interferon (IFN) signalling, plays a role
in immune dysfunction in INRs. However, the exact molecular
mechanisms, especially regarding the trajectory of CD4" T cell
exhaustion, have not been fully elucidated.

Added value of this study

This study combined single-cell RNA sequencing (scRNA-seq)
and single-cell VD) sequencing (scVDJ-seq) to analyse
peripheral blood mononuclear cells (PBMCs) from INRs,
immune responders (IRs), and healthy controls (HCs). We
introduced scGeneANOVA, a mixed model differential gene
analysis tool, which revealed important differentially
expressed genes and pathways overlooked by traditional

improved the prognosis for people living with HIV
(PLWH) by effectively suppressing viral replication,
increasing CD4" T cell counts, improving the CD4/
CD8 ratio, and repairing immune dysfunction.**
However, approximately 10-40% of PLWH do not
achieve adequate immune reconstitution of CD4" T
cell counts despite sustained virological suppression
with ART.* These individuals are termed immunolog-
ical non-responders (INRs). INRs face a significantly
higher risk of progressing to AIDS, experiencing non-
AIDS-related events such as cardiovascular diseases
and cancers, and have higher mortality rates compared
to immunological responders (IRs).”* The mecha-
nisms and biomarkers of INR remain poorly under-
stood, posing a significant challenge in HIV/AIDS
treatment.’

Persistent chronic immune activation and systemic
inflammation are major contributors to CD4" T cell loss
in INRs. CD4" T cells in INRs exhibit higher levels of
immune activation, exhaustion, and senescence
markers.”*"> Our previous bulk RNA-seq analysis
demonstrated that INRs exhibit sustained, enhanced
expression of the interferon (IFN) response pathway," a
phenomenon further confirmed by Tang et al.'* Recent
studies propose a “pathological proliferation” hypothesis
in INRs, suggesting that the over-proliferation of poor-
quality CD4" T cells result in incomplete immune
reconstitution.” Additionally, widespread abnormal
immune activation is observed across various immune
cells in INRs, including CD8" T cells, regulatory T cells
(Tregs), double-negative T «cells (DNT), mucosa-
associated invariant T cells (MAIT), natural killer (NK)
cells, B cells, and myeloid cells.*”'® These findings raise
questions about whether INRs exhibit a distinct profile

methods. Through RNA velocity and TCR information
analysis, we identified that CD4" T cells in INR patients are
more likely to follow an exhaustion trajectory, a process
closely linked to IFN activation. Additionally, the Viral
Identification and Load Detection Analysis (VILDA) tool
confirmed that INRs exhibit higher levels of HIV-1 transcripts,
which may further drive the dysregulated IFN response.

Implications of all the available evidence

This study provides critical insights into the immune
dysfunction seen in INRs, emphasizing the potential role of
IFN signalling in driving CD4" T cell exhaustion. The
identification of specific genes and exhaustion-related
pathways offers potential biomarkers and therapeutic targets
for restoring immune function in this population. These
findings suggest that strategies aimed at modulating IFN
signalling may help improve immune reconstitution in INRs,
potentially leading to better clinical outcomes.

of aberrant immune activation and how this leads to
CD4" T cell loss.

Single-cell RNA sequencing (scRNA-seq) provides a
granular view of gene expression at the individual cell
level, offering crucial insights into the immune system
of PLWH."”'* Unlike bulk RNA sequencing, scRNA-seq
unveils cellular heterogeneity and dynamics, which are
essential for understanding immune dysregulation.”
Recent applications of this technology have identified
significant differences in the immune cell profiles of
INRs. For example, Li et al. reported diminished levels
of MAIT cells and indications of mitochondrial
dysfunction.”” Wang et al. observed the heightened
proportions of GNLY*CD4* and CD8" effector T cells
have been observed, correlating with poor immune
reconstitution.”” Furthermore, Jia et al. noticed the
impaired diversity of the B cell receptor (BCR) repertoire
and differentiation in naive B cells of INRs through
single-cell immune repertoire sequencing (scVD]J-seq).”!
These insights underscore the pivotal role of scRNA-seq
in elucidating the mechanistic underpinnings of im-
mune recovery failure. However, to fully comprehend
the mechanisms driving immune dysregulation and
incomplete immune recovery in INRs, comprehensive
and large-scale single-cell analyses are essential.

In this study, we employed scRNA-seq and scVDJ-
seq to comprehensively analyse the immunological
characteristics of peripheral blood mononuclear cells
(PBMCs) from INRs. We developed a mixed model
differential gene analysis approach, scGeneANOVA, to
examine the gene expression profiles of INRs. Our
findings revealed a strong association between IFN
response and exhaustion signatures during CD4" T cell
differentiation. These results were further validated
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using bulk RNA-seq cohorts and public datasets. Addi-
tionally, we developed the Viral Identification and Load
Detection Analysis (VILDA) tool, which demonstrated
that PBMCs from INRs harbour more HIV-1 tran-
scripts, leading to elevated IFN signatures. This study
provides a high-resolution transcriptional landscape of
peripheral immune cells in INRs, underscoring the
impact of dysregulated IFN response on CD4" T cell
differentiation, and enhances the understanding of the
mechanisms  underlying  incomplete  immune
reconstitution.

Methods

Study design

This study utilized scRNA-seq, scVDJ-seq, and bulk
RNA-seq to investigate the immunological diversity of
INRs, IRs, and healthy controls (HCs). The primary
scRNA/VD]J-seq cohort consisted of 20 individuals,
including seven INRs, nine IRs, and four HCs. Addi-
tionally, scRNA/VDJ-seq data from 13 external in-
dividuals (three INRs, five IRs, and five HCs),*"** were
incorporated to enhance the statistical power and
expand the cohort to 33 individuals in total (Table S1).
The bulk RNA-seq cohort consisted of 60 individuals,
including 23 INRs, and 37 IRs (Table S2). Of note, there
was no overlap between participants in the scRNA/VD]J-
seq cohort and those in the bulk RNA-seq cohort.

For both scRNA/VD]J-seq and bulk RNA-seq samples
generated in this study, INRs were defined as HIV-
positive patients on ART for over 4 years, with viro-
logic control (VL <20 copies/mL) for 3.5 years but low
CD4" counts (<350 cells/pL). IRs met the same criteria
but had CD4" counts >500 cells/uL (Figure S1). To
minimize confounding factors affecting immune func-
tion, individuals with the following conditions were
excluded from the study: (1) Co-infections with hepatitis
B virus (HBV), hepatitis C virus (HCV), or Mycobacte-
rium tuberculosis (TB). (2) Other immunosuppressive
diseases such as cancer or autoimmune disorders
requiring immunosuppressive therapy. (3) Concurrent
use of immunomodulatory drugs apart from ART. (4)
Acute infections within one month prior to sample
collection. HCs were HIV-negative individuals with no
known immunological disorders or chronic conditions.

This study was approved by the Independent Ethics
Committee of Peking Union Medical College Hospital,
with approval ID 1-23PJ1189.

PBMC isolation and quality control

Peripheral blood mononuclear cells (PBMCs) were iso-
lated using Ficoll-Paque PLUS, followed by washing
and red blood cell lysis. Cell viability and quality control
were assessed using acridine orange/propidium iodide
(AO/PI) dual fluorescent staining on the Countstar
Rigel (S2) instrument. The quality control criteria were
as follows: cell concentration of 1000-1200 cells/pL, cell
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volume >60 pL, cell viability >90%, aggregation rate
<15%, and cell diameter <30 pm. After confirming that
the cell concentration and viability met the required
standards, the cell suspension was placed on ice and
processed for the 10x Genomics single-cell tran-
scriptomics workflow within 30 min.

scRNA-seq library preparation
scRNA-seq, scTCR-seq, and scBCR-seq libraries were
prepared in Biomarker Technologies (Qingdao, China)
using the 10x Genomics Chromium platform, loading at
least 10,000 cells per channel. Reverse transcription,
cDNA amplification, and gene expression libraries were
constructed, followed by sequencing on an Illumina
HiSeq X Ten. FASTQ data were processed with FastQC
and CellRanger (v7.1.0) for alignment and quantification.
Seurat was used for data filtering, normalization, PCA,
UMAP, clustering, and integration of TCR/BCR clono-
types. Cells with fewer than 1000 genes, 500 UMIs, or
>10% mitochondrial genes were excluded. Platelet genes
(“PPBP”, “PF4”, “GNG11”, “CAVIN2”) were removed
and doublets were removed with DoubletFinder. Batch
effects were corrected using the Harmony package.”
TCR/BCR repertoire data were processed with Cell-
Ranger VDJ and STARTRAC was used to analyse T and B
cell dynamics across cell types.”* The STARTRAC analysis
provided quantitative information on T and B cells
sharing the same immune repertoire, including clonal
expansion (identical information within the same cell
type), developmental transitions (identical information
between different cell types), and cross-tissue migration
(identical information between different tissues).”

Differential gene analysis

For cell cluster annotation, differentially expressed
genes (DEGs) were identified using the Seurat Fin-
dAllMarkers function. To compare gene expression be-
tween groups, we developed scGeneANOVA, a mixed
model approach that combines fold change (FC) calcu-
lations with rigorous statistical testing at the sample
level. FCs are calculated using average expression levels
across samples, followed by a pseudobulk strategy
where gene expression values are analysed using
ANOVA and Tukey’s post-hoc test. DEGs are identified
based on adjusted P-values (P-adj) from the post-hoc
test. scGeneANOVA tool is available at https://github.
com/rrrrroentsen/scGeneANOVA.

Gene set enrichment analysis

GSEA was performed using the fgsea package (v1.26.0).
DEGs were ranked by average log2 fold change, and
Hallmark gene sets were obtained from MSigDB via the
msigdbr package (v7.5.1). Pathways with adjusted P-
values <0.05 and normalized enrichment score (NES) > |
1.0| were considered significant. Additionally, Sample-
Level Enrichment Analysis (SLEA) was conducted using
SLEA software (v2.3.1) to calculate Z-scores for each
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sample, determining the relative importance of path-
ways at the sample level.

Gene set scoring algorithm

The AUCell package (v1.22.0) was used to assess gene set
activity in single-cell RNA-seq data. Gene expression
rankings were built using AUCell_buildRankings, fol-
lowed by calculation of AUC scores with AUCell_calcAUC.
Thresholds for active gene sets were explored with
AUCell_exploreThresholds, assigning cells to active states.
These AUC scores were integrated into Seurat metadata,
and UMAP plots were generated to visualize the scores,
with median UMAP coordinates used to label cell types.

RNA velocity and pseudotime analysis

RNA velocity analysis was conducted using scvelo
(v0.1.25), with Seurat metadata (UMAP coordinates,
clusters, cell types) integrated into the loom file. After
filtering and normalization, RNA velocities were
computed using scv.pp.moments function, and velocity
graphs were visualized on UMAP using scv.pl.veloci-
ty_embedding and scv.pl.velocity_embedding_stream
function. Single-cell trajectory analysis was performed
using Slingshot (v2.8.0)* and Monocle2 (v2.28.0).
Slingshot inferred developmental trajectories in diffu-
sion map space, and pseudotime was calculated for each
cell. Monocle2 identified highly variable genes and
performed differential gene testing along pseudotime,
with results visualized in pseudotime and branched
heatmaps, highlighting dynamic cell state transitions.

| chat analysis
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low-expression genes.
aggregated, and

Taction data were exported for further analysis.

Bulk RNA-seq and data analysis

The bulk RNA-seq pipeline includes quality control,
alignment, quantification, and normalization. MultiQC
(v1.9) performs initial quality control by generating
metrics and visualizations. Reads are aligned to the
GRCh38 reference genome using HISAT?2 (v2.1.0), with
SAM files converted to BAM and sorted via Samtools
(v1.10). Gene expression levels are quantified using
HTSeq based on the GTF annotation file. To account for
sequencing depth and gene length, raw counts are
normalized to TPM and FPKM, ensuring comparability
across samples for downstream analysis.
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Statistical analyses

Cell proportions and gene expression levels were pre-
sented as mean and standard deviations. Differences
between the three groups were analysed using ANOVA
followed by Tukey’s post-hoc test. Correlations were
assessed using the Spearman test. A P-value of less than
0.05 was considered statistically significant. Unless
otherwise noted, all statistical analyses and graphing
were performed using SPSS (v25.0), R software (v4.3.1),
R package ggplot2 (v3.5.1) and GraphPad Prism (v9.0.0).

Role of the funding source

This study was supported by the grants from Special
Research Fund for the Central High-level Hospitals of
Peking Union Medical College Hospital (Grant No.
2022-PUMCH-D-008), Chinese Academy of Medical
Sciences (CAMS) Innovation Fund for Medical Sciences
(Grant No. 2021-12M-1-037), National Key Technologies
R&D Program for the 13th Five-year Plan (Grant No.
20177X10202101-001). The funders played no role in
the design, experiment conduction, data analysis and
preparation of the manuscript of this work.

Results

A single-cell RNA-seq atlas of peripheral immune
cells in INRs

To investigate the immunological diversity of INRs at
single-cell resolution, we performed scRNA/VDJ-seq on
PBMCs from 20 individuals, including 7 INRs, 9 IRs,
and 4 HCs. Additionally, we incorporated scRNA/VD]J-
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seq data from 13 external individuals (3 INRs, 5 IRs,
5 HCs) sourced from previous studies,”"* resulting in a
combined cohort of 33 individuals (10 INRs, 14 IRs, and
9 HCs) (Fig. la, Table S1). For the 20 individuals
recruited for this study, the average age of INRs was
42 + 6.8 years, predominantly male, with an average
ART duration of 6.9 + 3.6 years. INRs had significantly
lower median CD4" T cell counts (214, IQR 195—
258 cells/pL) compared to IRs (817, IQR 784-1058 cells/
pL) and HCs (698, IQR 512-890 cells/pL) (Table S1).

After quality control and batch effect correction, we
merged data from 232,369 cells across 33 samples,
producing a comprehensive immune cell atlas (Fig. 1b).
Sequencing saturation averaged 80.6% (Table S3). TCR/
BCR profiles were integrated with scRNA-seq data
(Fig. 1c). Eight major immune compartments were
identified: CD4* T cells (CD3D*CD4"), CD8" T cells
(CD3D'CD8A"), v8 T cells (CD3D'TRDCY), natural
killer cells (NK, GNLY*NKG7"), B cells (MZB1*CD79"),
plasma cells (MZB1*CD38"), monocytes (LYZ"CD14"),
and dendritic cells (LYZ'FLT3") (Fig. 1d, Figures S2
and S3). Based on top DEGs, we further identified 51
subclusters within these compartments (Fig. Tle,
Tables S4-S6).

The proportion of CD4" T cells in INRs (10.4 + 4.6%)
was significantly lower than in IRs (27.5 + 7.0%) and
HCs (26.2 + 9.0%) (Padj <0.0001), while the proportion
of CD8" T cells was higher in both INRs (43.6 + 11.0%)
and IRs (36.0 + 9.1%) compared to HCs (23.8 + 4.5%)
(Padj <0.0001) (Fig. 1f). Other cell type frequencies
showed no significant differences across groups, indi-
cating that variations were primarily in the CD4" and
CD8" T cell compartments. This pattern was consistent
across experimental batches (Figure S4), emphasizing
the key immunological features of INRs—reduced
CD4" and elevated CD8" T cell proportions compared to
IRs and HCs.

scGeneANOVA and GSEA identified the enrichment
of MHC-Il and IFN response pathways in INRs
After annotating the single-cell transcriptomic map, we
performed differential gene expression analysis across
patient groups (Tables S7 and S8). Our study found that
commonly used methods—Seurat’s FindMarkers (Wil-
coxon rank-sum test, Table S7) and edgeR-LRT (pseu-
dobulk test, Table S8)*—were not well-suited for this
research. As shown in Figure S5b, AC004448.2 had the
biggest fold change value and lowest adjusted P-value in
Wilcoxon rank-sum test. However, ANOVA showed no
significant intergroup difference, as the expression of
AC004448.2 was significantly elevated in a specific INR
patient, causing false-positive results in both methods
(Figure S5c¢). These results highlighting the suscepti-
bility of single-cell and pseudobulk methods to individ-
ual sample effects.

To address this issue, we developed a mixed model
differential gene analysis approach (scGeneANOVA),
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detailed in the Methods section (Fig. 2a). Using the
scGeneANOVA function, we identified 33 new differ-
entially expressed genes that were not detected by the
single-cell and pseudobulk methods, including ITGA4,
LAG3, BHLHE40, CD4, EEF1A11, and SERINCS
(Fig. 2b—c, Table S9). The above genes have been pre-
viously reported to be closely associated with HIV
infection and INR phenotype.”*’Besides, scGeneA-
NOVA successfully excluded AC004448.2 as differen-
tially expressed gene, indicating better sensitivity of the
mixed model. These results collectively demonstrate
that the mixed model differential gene algorithm based
on the scGeneANOVA function is more suitable for our
study design compared to single-cell and pseudobulk
analysis models.

Using the scGeneANOVA analysis method, we ob-
tained differential gene results across different cell types
in INRs relative to IRs (Fig. 2d, Table S10). Frequency
analysis revealed that the HLA-C gene had the highest
frequency across different cell types, followed by ITGA4,
ACTN1, and SNHG29 genes (Fig. 2e). GO enrichment
analysis of all upregulated differentially expressed genes
indicated significant changes in biological processes
such as MHC class II protein complex and MHC pro-
tein complex (Fig. 2f).

Using the results from scGeneANOVA, we con-
ducted gene set enrichment analysis (GSEA) on the
entire gene sets, utilizing hallmark pathways from
MSigDB. Among these enriched inflammatory path-
ways, the IFN-y response was the most significantly
enriched pathway with the lowest P-value disparity be-
tween INRs and IRs (Fig. 2g). Notably, the predomi-
nance of the IFN-y response was primarily attributed to
CD4" T cells and CD8" T cells (Fig. 2h). We further
investigated the expression of the IFN-y response
pathway at the individual cell level by calculating the
AUC scores for each cell. Results confirmed that INRs
had upregulated IFN responses in both CD4" and CD8"
T cells, contributing to the enhanced expression of IFN-
related genes in the global PBMC transcriptional pro-
files (Fig. 2i).

Upregulated innate immune cell activation profiles
in INRs

Innate immune cells, including myeloid cells and innate
lymphoid cells, are major components of the immune
system’s first line of defence.” Based on canonical
myeloid markers, we identified eight myeloid sub-
clusters (Figures S6, S7). Despite significant heteroge-
neity in the proportions of myeloid cells among
individual samples, there were no significant differ-
ences between INRs and IRs in the proportions of these
subclusters (Figure S7b).

Using the scGeneANOVA algorithm, we discovered
significant differential gene expression in pDCs,
including HLA-C, LGALS1, CD83, and JAK2, sug-
gesting a more activated and mature phenotype in
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Fig. 1: Characterization of the immune cell profiles of INRs by scRNA/VDJ-seq. (a) Study design overview showing the cohort composition:
healthy controls (HC, N = 9), immunological non-responders (INR, N = 10), and immunological responders (IR, N = 14). PBMCs were collected and
subjected to single-cell RNA and TCR/BCR sequencing. (b) UMAP visualization of the minor cell subsets identified from the scRNA-seq data. The
right panel details the specific cell subsets identified within each minor cell type. (c) UMAP plot showing the detection of TCR and BCR sequences,
highlighting cells with detectable TCR and BCR. (d) UMAP plot annotated with major cell types, demonstrating the clustering of different immune
cell populations. (e) Heatmap showing the expression of key marker genes across different immune cell subsets. Each column represents a single cell,
and each row represents a gene, with the colour intensity indicating the expression level. (f) Bar plots comparing the percentage of each major cell
type among total PBMCs across HC, INR, and IR groups. Statistical significance was determined using ANOVA followed by Tukey post-hoc tests

(*P < 0.05, **P < 0.01, ***P < 0.001).

pDCs from INRs (Figure S7c and d). Furthermore,
CD83 expression in monocytes and classical dendritic
cells of both INRs and IRs was significantly higher
than in HCs, indicating widespread myeloid cell acti-
vation in PLWH (Figure S7e). We also found that CD83
expression levels in pDCs were significantly positively
correlated with overall PBMC interferon activation

levels (Pearson’s R = 0.4556, P-value = 0.0077) and
significantly negatively correlated with CD4" T cell
proportions (Pearson’s R = —0.4795, P-value = 0.0047)
(Figure S7f). This finding underscores the critical
role of pDCs, the primary producers of type I inter-
feron in the body, in the INR phenotype in HIV
infection.***
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Fig. 2: scGeneANOVA analysis and GSEA pathway enrichment analysis. (a) Workflow diagram summarizing the multi-level scRNA-seq data
analysis approach, including single-cell and pseudo-bulk methods to identify differentially expressed genes (DEGs). (b) Venn diagram showing the
overlap of DEGs identified by single-cell, pseudo-bulk, and mixed methods. A total of 33 DEGs were uniquely identified using the mixed method. (c)
Box plots showing the expression levels of selected DEGs in PBMCs across HC, INR, and IR groups. Statistical significance was determined using
ANOVA followed by Tukey post-hoc tests (*P < 0.05, **P < 0.01, ***P < 0.001). (d) Volcano plot of DEGs in PBMCs between INR and IR groups,
highlighting upregulated (red) and downregulated (blue) genes. The right panel shows the distribution of DEGs across different cell types. (e) Bar
plots illustrating the distribution and frequency of DEGs across various cell types. The distribution plot of DEGs (upper panel) shows the number of
identified DEGs in each cell type, while the frequency plot of DEGs (lower panel) represents the occurrence frequency of the identified DEGs across
different cell types. Up-regulated DEGs are labelled in red colour, and down-regulated DEGs are labelled in bule colour. (f) Top 6 enriched Gene
Ontology (GO) terms for upregulated (left) and downregulated (right) DEGs in INR vs. IR comparisons, with terms related to immune response and
cellular components. (g) Heatmap showing the Normalized Enrichment Score (NES) of various pathways in PBMCs and specific cell subsets between
INR and IR groups. Pathways like interferon gamma response and epithelial mesenchymal transition are prominently enriched. (h) GSEA results for
CD4" T cells and CD8™ T cells between INR and IR groups, displaying significant enrichment of interferon gamma response and other pathways. (i)
Bar plots comparing the AUCell interferon score across PBMCs, CD4" T cells, and CD8™ T cells in HC, INR, and IR groups. Statistical significance was
determined using ANOVA followed by Tukey post-hoc tests (*P < 0.05, **P < 0.01).
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INRs exhibit extensive heterogeneity in CD4" T cell
subclusters

Further clustering of CD4" T cells yielded 12 distinct
subclusters, including naive (Tnave, CD4T_c01-LEF1),
central memory (Tcy, CD4T_c02-GPR183), effector
memory (Tgy, CDA4T_c03-ANK3, CDA4T_c04-IFI44L,
CDA4T_c05-TIMP1, = CD4T_c06-CCR6,  CD4T_c07-
GZMK), effector (Tgrr, CD4T_c10-GNLY), killer Ig-like
receptors (Tgr, CD4T_c11-KLRD1), regulatory (Treg,
CDAT_c09-FOXP3), exhausted (Tpx, CD4T_c08-TIGIT),
and cycling-phenotype (Tcyclingg CD4T_c12-STMN1)
(Fig. 3a-d). Notably, CD4T_c07-GZMK, CDA4T_c05-
TIMP1, and CD4T_c06-CCR6 were also identified as
Th1, Th2, and Th17-like cells, respectively.

Significant differences in the proportions of CD4" T
cell subtypes were observed (Fig. 3e). INRs exhibited
lower proportions of CD4T_c01-LEF1 cells, indicative of
a decrease in naive CD4™ T cells, and higher proportions
of  CD4T_c02-GPR183,  CD4T_c08-TIGIT, and
CD4T_c12-STMN1 cells, suggesting an increase in
central memory, exhausted, and cycling phenotypes
compared to IRs and HCs (Fig. 3f). Notably, the pro-
portions of CD4T_c05-TIMP1, CD4T_c06-CCR6, and
CD4T_c07-GZMK cells were lower in IRs compared to
HCs, indicating that despite achieved optimal CD4" T
cell recovery, IRs have a distinct proportion of memory
phenotype CD4" T cells than HCs (Fig. 3f).

scGeneANOVA results indicate that CD4" T cells in
INRs exhibit significant differential gene expression,
including MHC response genes such as ITGA4, HLA-C,
HLA-DRB1, and CD74, as well as exhaustion markers
TOX, LAG3, TIGIT, and HAVCR2 (Fig. 3g-i). By

examining previously defined signature genes, we
observed distinct functional states among each CD4" T
cell subset. The CD4T_c01-LEF1 subset exhibited the
highest naive score, while the CD4T_c09-FOXP3 and
CD4T_c08-TIGIT subsets had the highest exhaustion
scores. The CD4T_c07-GZMK and CD4T_c10-GNLY
subsets showed elevated inflammation scores, and the
CD4T_c10-GNLY and CDA4T_c11-KLRD1 subsets
demonstrated the highest cytotoxic scores (Figure S10).

These functional distinctions were also evident when
comparing CD4" T cells between different patient
groups. CD4" T cells in INRs exhibited the highest
levels of inflammatory and exhaustion scores, whereas
the levels of naive and cytotoxic scores in INRs were
lower than those in IRs. These differences were
contributed by various cell subsets and were consistent
across them (Figure S10). These shifts in subpopulation
frequencies and gene expression indicate extensive
heterogeneity of CD4* T cells in INRs, suggesting a
skew towards a more differentiated and exhausted state.

IFN response highly involved in the exhaustion
trajectory of CD4" T cells

To elucidate the developmental transitions of CD4" T
cell clusters, we applied RNA velocity analysis and
Slingshot to construct the developmental trajectories of
12 CD4" T cell clusters. We identified two prominent
directional streams originating from the naive popula-
tion (CD4T_c01-LEF1) towards the exhausted popula-
tion (CD4T_c08-TIGIT) and the effector population
(CD4T_c10-GNLY), respectively (Fig. 4a). Additional
Monocle2 analysis also demonstrated the two directions
of CD4" T cell differentiation (Fig. 4b). Along the tra-
jectory leading to exhausted cells, the expression of
CTLA4 in CD4" T «cells specifically increased.
Conversely, along the trajectory towards effector cells,
the expression of GNLY specifically increased (Fig. 4c).
We designated these two CD4" T cell differentiation
pathways as the “Exhaustion trajectory” and the
“Effector trajectory”.

We then performed STARTRAC analysis using the

data, we\observed that the -effector
(CD4T_c10-GNLY) exhibited a signifje

dings from other
a comparison of the
STARTRAC-tran index degived from TCR sequence
data, we noted that the eftector population (CD4T_c10-
GNLY) in INRs showéd significantly lower state transi-
tion capability (Fjg’ 4f). In conjunction with our prior
discovery of elévated levels of exhausted CD4" T cells
(CD4T_c08TIGIT) in INRs, these observations suggest
an incredsed tendency toward an exhaustion“prone dif-
ferepfiation trajectory in the CD4" T cells of INR
eter cells differentiating into effector cells.
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Fig. 3: Extensive heterogeneity in CD4" T cell subclusters of INRs. (a) UMAP plot showing the clustering of CD4™ T cell subclusters. Each
subset is colour-coded and labelled accordingly. (b) UMAP plots showing the expression of specific marker genes across the identified CD4" T cell
subclusters, with higher expression levels indicated by darker colours. (c) Violin plots showing the distribution of key marker gene expressions
across different CD4" T cell subclusters. (d) Heatmap displaying the expression of selected marker genes across various CD4" T cell subclusters.
Each row represents a gene, and each column represents a cell, with colour intensity indicating expression levels. (e) Stacked bar plots showing
the proportion of each CD4" T cell subcluster among total CD4" T cells across HC, INR, and IR groups. Each bar represents a group, and colours
represent different subclusters. (f) Bar plots comparing the percentage of specific CD4" T cell subclusters among total CD4" T cells across HC,
INR, and IR groups. Statistical significance was determined using ANOVA followed by Tukey post-hoc tests (*P < 0.05, **P < 0.01, ***P < 0.001).
(g) Volcano plot of DEGs in CD4" T cells between INR and IR groups, highlighting upregulated (red) and downregulated (blue) genes. Key genes
are labelled, including ITGA4 and HLA-C. (h) Bar plots illustrating the distribution and frequency of DEGs across various CD4" T cell subclusters.
The distribution plot of DEGs (upper panel) shows the number of identified DEGs in each cell type, while the frequency plot of DEGs (lower
panel) represents the occurrence frequency of the identified DEGs across different cell types. Up-regulated DEGs are labelled in red colour, and
down-regulated DEGs are labelled in bule colour. (i) Box plots showing the expression levels of selected DEGs in CD4" T cells across HC, INR, and
IR groups. Statistical significance was determined using ANOVA followed by Tukey post-hoc tests (*P < 0.05, **P < 0.01).
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To investigate the underlying mechanism driving the
distinct transcriptional programs of the two trajectories,
we analysed the gene expression kinetics of CD4™ T cells
with Monocle2 package. Ordered by pseudotime, we
identified 154 DEGs which were clustered into two
main groups (Fig. 4g). Notably, DEGs from cluster 1
(n = 90) primarily consisted of interferon-stimulated
genes (ISGs) and highly enriched in IFN response
pathway (Ranked as No. 3 in the Table S11), while
cluster 2 (n = 64) was mainly composed of effector and
cytotoxic genes (Fig. 4h). Additionally, pseudotime
analysis highlighted a strong association between IFN
and exhaustion signatures during CD4" T cell differ-
entiation in the exhaustion trajectory (Fig. 4i). Notably,
we observed that the expression levels of TIGIT and
OAS1 in INRs were markedly higher compared to IRs
and HCs, particularly during the later stages of the
exhaustion trajectory, underscoring the distinct differ-
ences between INRs and IRs (Fig. 4j). Furthermore, the
IFN signature scores in CD4" T cell were significantly
positively correlated with exhausted cell percentage
(Pearson’s R = 0.5442, P-value = 0.0011) and signifi-
cantly negatively correlated with CD4™ T cell proportions
(Pearson’s R = —0.5500, P-value = 0.0009) (Fig. 4k).

To validate these findings, we established a new
PLWH cohort consisting of 23 INRs and 37 IRs (Fig. 5a
and b, Table S8). Flow cytometry showed higher levels
of PD-1*(encoded by PDCD1) and TIGIT* CD4" T cells
in INRs, whereas there were no significant differences
in LAG-3 and TIM-3 (encoded by HAVCR2) levels
(Fig. 5¢). Bulk RNA-seq revealed an elevated IFN gene
signature in INRs, which correlated with increased
exhausted CD4" T cells (Pearson’s R = 0.4113, P-
value = 0.0011) and lower CD4" T cell proportions
(Pearson’s R = -0.5063, P-value<0.0001) (Fig. 5d-g,
Figure S11).

Using public RNA-seq data (GSE195543),“ we
confirmed that type-I I[FN treatment induced exhaustion
markers (PDCD1, LAG3, HAVCR2) in naive CD4" T
cells (Fig. 5h—i). Specifically, PDCD1 expression was
upregulated at 4 h of IFN treatment, followed by LAG3
(16 h) and HAVCR2 (96 h) at later time points (Fig. 5i).
This temporal pattern highlights the dynamic develop-
ment of IFN-induced CD4" T cell exhaustion. Further-
more, knockdown of IRF or STAT transcription factors
significantly reduced IFN-p-induced HAVCR2 expres-
sion (Fig. 5j), supporting the role of IFN in driving CD4"
T cells into terminal exhaustion in non-HIV conditions.

eased naive CD8" T cell proportion and
enhanc HC-I reaction in INRs

subsets (Figures S12,
icant decrease in the

ably, there was a signif-
naive CD8" T cells in

etween the groups. STARTRAC analysis

evealed no differences in CD8" T cell dynamic devgl-
opment between INR and IRs.

(Figure
elevated in

7 flow cytometry,
er proportion of
exhausted CD4" T Ce
ference in CD8" T
(Figure S14).

To further explore CD

in INRs.?!#
To understand B cell g

T cell proportions (Pearson’s R = 03704,
P #0.0339) (Figure S17e). These findings suggest that B
cell developmental impairment, along with interferoy
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Fig. 4: Exhaustion tendency and IFN signatures in CD4" T cells of INRs. (a) RNA velocity plot with Slingshot lineage tracing showing the

exhaustion and effector trajectories of CD4" T cells. Each cell is colour-coded according to its predicted trajectory. (b) Trajectory analysis using
Monocle2, depicting cell fate determination (left) and pseudotime (right) of CD4" T cells along the exhaustion and effector lineage. (c)
Expression of selected marker genes (e.g., CTLA4 and GNLY). during the increased pseudotime along two different lineages. (d) UMAP plots
showing the distribution of TCR clonotypes within CD4* T cells. Each clonotype is colour-coded and labelled accordingly. (e) Network diagram
illustrating the TCR information among different CD4" T cell clusters, with self-lines representing expansion score and the interaction-lines
representing transition score. (f) Bar plots comparing the percentage, the STARTRAC expansion score and the STARTRAC transition score
of CD4T_cO8-TIGIT (Tgy) and CD4T_c10-GNLY (Tgre) across HC, INR, and IR groups. Statistical significance was determined using ANOVA
followed by Tukey post-hoc tests (*P < 0.05, **P < 0.01, ***P < 0.001). (g) Heatmap displaying the expression dynamics of key genes along the
exhaustion and effector trajectories in CD4™ T cells. Each row represents a gene, and colour intensity indicates expression levels. (h) Reactome
pathway enrichment results for two major clusters (Cluster 1: exhaustion trajectory; Cluster 2: effector trajectory) in CD4" T cells. (i and j) Line
plots showing the expression levels of selected genes along the pseudotime in CD4" T cells. Lines represent different cell fates (Cell fate 1:
exhaustion, Cell fate 2: effector). (k) Scatter plots showing the correlation between exhaustion percentage of CD4" T cells and PBMC AUCell
interferon score (left) and CD4" T cell percentages (right) with the respective correlation coefficients and P-values.
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blood mononuclear cells (PBMCs) were collected from 23 INRs and 37 immunological responders (IRs). Flow cytometry and bulk RNA-seq were
performed, followed by correlation analysis. (b) Comparison of CD4* and CD8" T cell counts, age, and gender differences between INRs and IRs.
(c) Comparison of the expression of PD-1, TIGIT, LAG-3, and TIM-3 in CD4" T cells between INRs and IRs. (d) Volcano plot depicting differ-
entially expressed genes (DEGs) between INRs and IRs. () Comparison of the Sample-Level Enrichment Analysis (SLEA) Z-score for IFN genes
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dots represent for IRs. (h) Heatmap showing the expression patterns of DEGs across early, intermediate, and late time points in IFN-f-treated
human primary CD4" T cells. (i) Temporal expression profiles of selected interferon-stimulated genes (ISGs) (MX1, CXCL10, IFI27) and
exhaustion markers (PDCD1, LAG3, HAVCR2) across different time points. Red represents the IFN-B-treated group, and blue represents the
control group. (j) shRNA-mediated knockdown of IRF and STAT family transcription factors demonstrating the reduction of HAVCR2 expression
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activation, is linked to immune

reconstitution.

incomplete

igher HIV-1 viral transcripts and heightened IFN

résponse in INRs: insights from VILDA analysis
The IFN response is vital for host defence against vital
inféctions, primarily through the induction / of
interferon-stimulated genes (ISGs).*” To investigat¢ the
mechgnisms driving the heightened IFN response
observed in INRs, we developed the VILDA tool. ¥ILDA
enables\ rapid and accurate detection of trayscribed
reads from up to 14,328 viral types using bulk RNA-seq
data (Fig.\pa). We utilized the VILDA tool to apalyse our
previously\published bulk RNA-seq datasefs.** Using
this approach, we identified a strong cortelation be-
tween SIV \iral transcript frequencies derived from
VILDA and plasma SIV viral loads megsured by RT-
qPCR in rhesus monkeys (Figure S18).

In this curdent analysis, VILDA r¢vealed that an
average of 96.95% of reads from peripheral blood tran-
scriptome  sequehcing fastq files were successfully
mapped to the hyman reference genome, with the
remaining 3.05% representing unmapped data (Fig. 6b).
Secondary analysis of these unmapped reads identified
308 viral types, with \l0 meeting/ our criteria for high
read count and low dropout rate (Fig. 6¢ and Table S12).
These included the BeAn 58,038 virus, human endog-
enous retrovirus K113 \(HERV-K113), Esparto virus,
Emiliana huxleyi virus 86, {horistoneura fumiferana
granulovirus, Ictalurid herpesvirus 1, Escherichia phage
DE3, Enterobacteria phage\P7, Parainfluenza virus 5,
and HIV-1 virus.

When we integrated VILDA results with SLEA for
pathway enrichment, five viryses were found to be
significantly associated with IEN pathway activation:
BeAn 58,058 virus, HIV-1, Estherichia phage DE3,
HERV-K113, and Emterobacteria\phage P7 (Fig. 6d).
Notably, BeAn 58,038 virus and H[V-1 showed a posi-
tive correlation with IFN activation, while the others
exhibited a negatiye correlation. Further analysis across
different patient groups revealed that\INRs had signifi-
cantly higher fyequencies of BeAn 58,058 virus and
HIV-1 transcripts compared to HCs (Fig. Ge). Among
these viruses,/only HIV-1 had higher expression levels
in INRs compared to IRs, and it was exclusjvely detected
in PLWH, with no detection in HCs.

Given the low plasma viral load in PLWH)\patients on
long-term/ ART, the detection of HIV-1 transcripts by
VILDA likely reflects the presence of the HIV-1 reser-
voir within PBMCs rather than circulating viral\particles
in plasfna. qPCR validation further confirmed thgt INRs
have higher levels of total HIV-1 total DNA and GaRNA
per €D4" T cell compared to IRs (Fig. 6f). Additiopally,
thefe were significant positive correlations between
SLEA IFN gene set scores and levels of HIV-1 total DNA
(Dearson’s R = 0.6443, P-value = 0.0007) and HIV-1
¢aRNA (Pearson’s R = 0.6669, P-value = 0.0004
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igure S19). These findings suggest th
size and transcript
are closely linked to IFN
with higher levels of
enhanced
Ei

Discussion

This study provides a detailed single-cell resolution map
of peripheral immune cells in INRs. Previous research
identified the elevated IFN signalling pathway in INR
patients.”** In the clinical phase II trial, higher dosage
of LLDT-8 treatment notably resulted in increased CD4*
T cell counts and reduced IFN-y-induced protein 10 (IP-
10) levels.” Building upon these findings, this study
employs scRNA/VDJ-seq to further validate the associ-
ation between the IFN response and CD4" T cell
depletion, and delving deeper into the underlying
mechanisms. The key findings of this study include the
enhanced IFN response signature in CD4" T cells of
INRs, which correlated strongly with T cell exhaustion
markers. Our trajectory and pseudotime analyses
further delineated the developmental paths of CD4" T
cells in INRs, highlighting the progression towards an
exhausted state driven by IFN response. The dysregu-
lated IFN response is likely to underly impaired im-
mune recovery in INRs despite ART. Our results
emphasized the pathogenetic role of IFN response,
providing insights for potential therapeutic targets of
INRs.

Questions remained that which specific interferon
signature has a more profound impact on incomplete
immune reconstitution in INRs. In this study, the SLEA
score primarily reflects Type I IFN characteristics, and
our findings reveal a stronger association between CD4"*
T cell exhaustion and canonical Type I ISGs. However,
these results should not overshadow the potential con-
tributions of Type II IFN signatures. Previous studies
have demonstrated a close correlation between higher
plasma IFN-y levels and lower CD4" T cell counts in
PLWH.” Given the intricate crosstalk between the
downstream signalling pathways of Type I and Type II
[FNs,** further experiments are essential to elucidate
their respective roles and underlying causal mecha-
nisms in immune reconstitution failure in INRs.

CD4" T cell exhaustion is a multifactorial and dy-
namic process, rather than being solely driven by IFN
signalling.”® Using publicly available data, we demon-
strated a strong association between IFN signalling and
the expression of PDCD1 and HAVCR2 in CD4" T cells
in vitro. However, flow cytometry analysis in patient
samples revealed a significant difference only in PD-1
(encoded by PDCD1) expression, while TIM-3 (enco-
ded by HAVCR2) showed no significant difference. This
observation suggests the presence of a more complex
gene regulatory network in patients. In addition to IFN
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responses, we identified several pathways, including
hypoxia and PI3K/AKT/mTOR signalling, as signifi-
cantly associated with CD4" T cells. These pathways
have been described as associated with the CD4" T cell
exhausted phenotype.”*? The significant association of
these pathways with CD4" T cells suggests a potential
interplay between metabolic and signalling dysregula-
tion and the maintenance of T cell exhaustion in INRs.®
These findings raise the possibility that the activation of
the IFN response may not be the sole or primary driver
of immune reconstitution failure. Instead, it could
represent a downstream consequence of broader dys-
regulated metabolic and signalling pathways."*

Furthermore, our results show that while myeloid
cells and NK cells in INRs do not show significant dif-
ferances in cell proportions, their activation and fync-
tional indicators are markedly elevated. Although £D8"
T cells\in INRs also show significant enrichment 6f IFN
response pathways, their exhaustion levels Are not
significantly higher. Instead, these cells demgnstrate a
notable efhancement in MHC-I-mediated cell in-
teractions. Recent studies further suppory these find-
ings, showing that total CD8" T cells iry INRs exhibit
significantly ihcreased expression of /HLA-DR and
CD38, indicative, of activation, but oply a limited in-
crease in PD1* sybpopulations.”” Cgmbined with our
another study, we hypothesize that the enhanced MHC-
I expression in CD8Y T cells of INRs might reflect the
persistence of HIV-1 \reservoir fells.* Further studies
are needed to evaluate\the spetific functional roles of
enhanced MHC-I expressjon of CD8" T cells.

Additionally, we obselyéd developmental impair-
ments in B cells of INRs, cgnsistent with recent findings
from other studies.”"*~*%/ Notably, our analysis did not
identify a separate Breg cell cluster, potentially due to
their inclusion withiry the UsmB (B_c03-CD1C) sub-
population, as Breg also exhibit high CD1C expression.”
Breg cells are knoyn to regulate NFN-y production of
CD4" T cells, conjributing to immune suppression and
maintaining imyhune tolerance.” Thi§ immunoregula-
tory role may g¢xplain the observed negative correlation
between the Arequency of UsmB (B_c03-CD1C) cells
and IFN scgres in our study. Further studies are war-
ranted to delineate the specific role of Breg cells and
their intefactions with other immune cell poptijations in
INRs. Yaken together, these phenomena further un-
derscore that INRs exhibit widespread immuye cell
developmental impairments. Their immune dysfunc-
tioff is not limited to the failure of CD4" T cell regon-
stitution but includes extensive immune activation and
functional impairments.

found that scGeneANOVA is more suitable for this
study compared to Seurat’s Wilcoxon algorithm and the
pseudo-bulk edgeR-LRT method, as it better captures
the unique and accurate gene expression characteristics
in INRs. However, the application of scGeneANOVA
requires attention to two key considerations. First, the
method assumes that gene expression data approxi-
mates a normal distribution, which necessitate pre-
validation or transformation of the count data. Second,
scGeneANOVA is better suited for large-scale single-cell
cohorts with experimental designs involving three or
more groups. Under such conditions, it effectively re-
duces Type I errors and enhances analytical accuracy.
These features make it particularly advantageous for
complex experimental designs and large-scale single-cell
data analyses. Therefore, we recommend combining
scGeneANOVA with different DEG analysis methods to
provide a more comprehensive analysis, and identify
truly important and critical gene expression patterns.

This study also developed two bioinformatic tools,
including scGeneANOVA and VILDA. The application
of our mixed model differential gene analysis approach,
scGeneANOVA, revealed a unique set of differentially
expressed genes and pathways, emphasizing the altered
immune landscape in INRs. Through our analysis, we
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In addition, we developed the VILDA tool to exploré
the mechanisms driving the heightened IFN respoyse
obskrved in INRs. VILDA enabled us to rapidly /and

irus K113 (HERV-K113)
. 'th findings from pre-

essepftial. Techniques such as PCR and WB are\neces-
sary to confirm the transcriptional or translationsl ac-
tiyity of these viruses, thereby strengthening \the
Biological relevance of the findings.

This study has several limitations. First, a key
consideration in interpreting our findings is the
inherent association between baseline CD4" T cell
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depletion and immune reconstitution failure. In our
cohort, nearly all INR patients had very low baseline
CD4" T cell counts. However, some IR patients with low
baseline CD4" T cell counts (e.g., IR6 and IR9) still
achieved successful CD4" T cell recovery, suggesting
that factors beyond low baseline counts—such as
chronic IFN activation and viral persistence—may also
contribute to immune exhaustion in INR patients. Sec-
ond, our scRNA-seq analysis was limited to peripheral
blood immune cells and was conducted as a cross-
sectional study, which lacks the temporal dimension
necessary to fully capture the dynamics of immune cell
changes over time. Access to tissue samples, such as
lymph nodes, and longitudinal tracking could provide a
more comprehensive understanding of IFN’s impact on
CD4" T cell development. Third, while we integrated
scVD]J-seq data to explore immune repertoire diversity,
our study lacks spatial context and chromatin accessi-
bility information, which are crucial for understanding
the positional relationships of interacting cell types and
the regulatory mechanisms driving immune dysfunc-
tion. Future studies should consider the application of
spatial transcriptomics and scATAC-seq to elucidate
these aspects and further investigate the role of IFN-
related transcription factors in CD4" T cell state
remodelling. Finally, while VILDA identified higher
levels of viral transcripts in INRs, particularly HIV-1,
our study’s scope was limited by the relatively small
sample size of our bulk RNA-seq cohort. As a result, our
findings should be considered exploratory and warrant
further validation in larger, prospective cohorts. Addi-
tionally, integrating VILDA with other virome-wide ap-
proaches could provide a more detailed picture of the
viral landscape in INRs and its contribution to immune
dysfunction.

In conclusion, this study provides a comprehensive
understanding of the mechanisms driving immune
dysfunction in INRs, particularly highlighting the po-
tential role of chronic IFN signalling and viral persis-
tence in CD4" T cell exhaustion and incomplete
immune reconstitution. Our study uncovers potential
biomarkers and therapeutic targets, offering new ave-
nues for improving immune recovery in this vulnerable
population. Future research should prioritize validating
these biomarkers and exploring therapeutic strategies to
modulate the IFN response, aiming to mitigate T cell
exhaustion and enhance immune reconstitution in
INRs. Together, these findings offer new insights into
the mechanisms underlying immune dysfunction in
INRs, emphasizing the potential role of chronic IFN
signalling and viral persistence in driving CD4* T cell
exhaustion and incomplete immune reconstitution.
This study not only advances our understanding of INR
pathophysiology but also lays the groundwork for
developing targeted therapeutic strategies to improve
immune recovery in this vulnerable population.
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