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Abstract

Population health interventions are essential to reduce health inequalities
and tackle other public health priorities, but they are not always amenable
to experimental manipulation. Natural experiment (NE) approaches are at-
tracting growing interest as a way of providing evidence in such circum-
stances. One key challenge in evaluating NEs is selective exposure to the
intervention. Studies should be based on a clear theoretical understanding
of the processes that determine exposure. Even if the observed effects are
large and rapidly follow implementation, confidence in attributing these ef-
fects to the intervention can be improved by carefully considering alternative
explanations. Causal inference can be strengthened by including additional
design features alongside the principal method of effect estimation. NE stud-
ies often rely on existing (including routinely collected) data. Investment in
such data sources and the infrastructure for linking exposure and outcome
data is essential if the potential for such studies to inform decision making
is to be realized.
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INTRODUCTION

Natural experiments (NEs) have a long history in public health research, stretching back to John
Snow’s classic study of London’s cholera epidemics in the mid-nineteenth century. Since the
1950s, when the first clinical trials were conducted, investigators have emphasized randomized
controlled trials (RCTs) as the preferred way to evaluate health interventions. Recently, NEs and
other alternatives to RCTs have attracted interest because they are seen as the key to evaluating
large-scale population health interventions that are not amenable to experimental manipulation
but are essential to reducing health inequalities and tackling emerging health problems such as
the obesity epidemic (15, 27, 40, 68, 76).

We follow the UK Medical Research Council guidance in defining NEs broadly to include
any event not under the control of a researcher that divides a population into exposed and unex-
posed groups (16). NE studies use this naturally occurring variation in exposure to identify the
impact of the event on some outcome of interest. Our focus here is on public health and other
policy interventions that seek to improve population health or which may have important health
impacts as a by-product of other policy goals. One key evaluation challenge is selective exposure
to the intervention, leading exposed individuals or groups to differ from unexposed individuals or
groups in characteristics associated with better or worse outcomes. Understanding and modeling
the process(es) determining exposure to the intervention are therefore central to the design and
conduct of NE studies.

Some authors define NEs more narrowly to include only those in which the process that
determines exposure (often referred to as the assignment or data-generating process) is random or
as-if random (22, pp. 15–16). Truly random assignment, although not unknown (14), is extremely
rare in policy and practice settings. As-if randomness lacks a precise definition, and the methods
proposed to identify as-if random processes (such as a good understanding of the assignment
process and checks on the balance of covariates between exposed and unexposed groups) are
those used to assess threats to validity in any study that attempts to make causal inferences from
observational data. In the absence of a clear dividing line, we prefer to adopt a more inclusive
definition and to assess the plausibility of causal inference on a case-by-case basis.

In the next section, we set out a general framework for making causal inferences in experimental
and observational studies. The following section discusses the main approaches used NE studies
to estimate the impact of public health interventions and to address threats to the validity of causal
inferences. We conclude with brief proposals for improving the future use of NEs.

CAUSAL INFERENCE IN TRIALS AND OBSERVATIONAL STUDIES

The potential outcomes model provides a useful framework for clarifying similarities and differ-
ences between true experiments on the one hand and observational studies (including NEs) on
the other hand (51). Potential outcomes refer to the outcomes that would occur if a person (or
some other unit) were exposed simultaneously to an intervention and a control condition. As only
one of those outcomes can be observed, causal effects must be inferred from a comparison of
average outcomes among units assigned to an intervention or to a control group. If assignment is
random, the groups are said to be exchangeable and the intervention’s average causal effect can
be estimated from the difference in the average outcomes for the two groups. In a well-conducted
RCT, randomization ensures exchangeability. In an observational study, knowledge of the as-
signment mechanism can be used to make the groups conditionally exchangeable, for example,
by controlling for variables that influence both assignment and outcomes to the extent that these
variables are known and accurately measured (34).

40 Craig et al.
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As well as showing why a control group is needed, this framework indicates why an under-
standing of the assignment process is so important to the design of an NE study. The methods
discussed in the next section can be seen as different ways of achieving conditional exchangeability.
The framework also usefully highlights the need to be clear about the kind of causal effect being
estimated and, in particular, whether it applies to the whole population (such as an increase in
alcohol excise duty) or a particular subset (such as a change in the minimum legal age for purchas-
ing alcohol). A comparison of outcomes between groups assigned to the intervention or control
condition provides an estimate of the effect of assignment, known as the intention-to-treat (ITT)
effect, rather than the effect of the intervention itself. The two are necessarily the same only if
there is perfect compliance. Some methods, such as fuzzy regression discontinuity (RD) and in-
strumental variables (IVs), estimate a different effect, the complier average causal effect (CACE),
which is the effect of the intervention on those who comply with their allocation into the control
or intervention group (11). Under certain assumptions, the CACE is equivalent to the ITT effect
divided by the proportion of compliers. Which effect is relevant will depend on the substantive
questions the study is asking. If the effect of interest is the ITT effect, as in a pragmatic effective-
ness trial or a policy evaluation in which decision makers wish to know about the effect across the
whole population, methods that estimate a more restricted effect may be less useful (20).

A related issue concerns extrapolation—using results derived from one population to draw
conclusions about another. In a trial, all units have a known probability of being assigned to the
intervention or control group. In an observational study, where exchangeability may be achieved
by a method such as matching or by conditioning on covariates, intervention groups may be
created whose members in practice have no chance of receiving the treatment (55). The meaning
of treatment effects estimated in this way is unclear. Extrapolation may also be a problem for some
NE studies, such as those using RD designs, which estimate treatment effects at a particular value
of a variable used to determine assignment. Effects of this kind, known as local average treatment
effects, may be relevant to the substantive concerns of the study, but researchers should bear in
mind how widely results can be extrapolated, given the nature of the effects being estimated.

Table 1 summarizes similarities and contrasts between RCTs, NEs, and nonexperimental
observational studies.

METHODS FOR EVALUATING NATURAL EXPERIMENTS

Key considerations when choosing an NE evaluation method are the source of variation in exposure
and the size and nature of the expected effects. The source of variation in exposure may be quite
simple, such as an implementation date, or quite subtle, such as a score on an eligibility test.
Interventions that are introduced abruptly, that affect large populations, and that are implemented
where it is difficult for individuals to manipulate their treatment status are more straightforward to
evaluate. Likewise, effects that are large and follow rapidly after implementation are more readily
detectable than more subtle or delayed effects. One example of the former is a study that assessed
the impact of a complete ban in 1995 on the import of pesticides commonly used in suicide in
Sri Lanka (32). Suicide rates had risen rapidly since the mid-1970s, then leveled off following a
partial ban on pesticide imports in the early 1980s. After the complete ban, rates of suicide by
self-poisoning fell by 50%. The decrease was specific to Sri Lanka, was barely offset by an increase
in suicide by other methods, and could not be explained by changes in death recording or by wider
socioeconomic or political trends.

Although NE studies are not restricted to interventions with rapid, large effects, more com-
plicated research designs may be needed where effects are smaller or more gradual. Table 2
summarizes approaches to evaluating NEs. It includes both well-established and widely used
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Table 1 Similarities and differences between RCTs, NEs, and observational studies

Type of study
Is the intervention

well defined?
How is the

intervention assigned?
Does the design

eliminate confounding?

Do all units have a
nonzero chance of

receiving the
treatment?

RCTs A well-designed trial
should have a clearly
defined intervention
described in the study
protocol.

Assignment is under the
control of the research
team; units are
randomly allocated to
intervention and
control groups.

Randomization means
that, in expectation,
there is no confounding,
but imbalances in
covariates could arise by
chance.

Randomization means
that every unit has a
known chance of
receiving the treatment
or control condition.

NEs Natural experiments are
defined by a clearly
identified intervention,
although details of
compliance, dose
received, etc., may be
unclear.

Assignment is not under
the control of the
research team;
knowledge of the
assignment process
enables confounding
due to selective
exposure to be
addressed.

Confounding is likely due
to selective exposure to
the intervention and
must be addressed by a
combination of design
and analysis.

Possibility of exposure
may be unclear and
should be checked. For
example, RD designs
rely on extrapolation
but assume that at the
discontinuity units
could receive either
treatment or no
treatment.

Nonexperimental
observational
studies

There is usually no
clearly defined
intervention, but there
may be a hypothetical
intervention underlying
the comparison of
exposure levels.

There is usually no
clearly defined
intervention and there
may be the potential for
reverse causation (i.e.,
the health outcome may
be a cause of the
exposure being studied)
as well as confounding.

Confounding is likely
due to common causes
of exposure and
outcomes and can be
addressed, in part, by
statistical adjustment;
residual confounding is
likely, however.

Possibility of exposure is
rarely considered in
observational studies so
there is a risk of
extrapolation unless
explicitly addressed.

Abbreviations: NE, natural experiment; RCT, randomized controlled trial; RD, regression discontinuity.

methods such as difference-in-differences (DiD) and interrupted time series (ITS), as well as more
novel approaches such as synthetic controls. Below, we describe these methods in turn, drawing
attention to their strengths and limitations and providing examples of their use.

Regression Adjustment

Standard multivariable models, which control for observed differences between intervention and
control groups, can be used to evaluate NEs when no important differences in unmeasured char-
acteristics between intervention and control groups are expected (see Model 1 in Appendix 1).
Goodman et al. used data from the UK Millennium Cohort Study to evaluate the impact of a
school-based cycle training scheme on children’s cycling behavior (29). The timing of survey
fieldwork meant that some interviews took place before and others after the children received
training. Poisson models were used to estimate the effect of training on cycling behaviors, with
adjustment for a wide range of potential confounders. Previous evaluations that compared children
from participating and nonparticipating schools found substantial effects on cycling behavior. In
contrast, this study found no difference, suggesting that the earlier findings reflected the selective

42 Craig et al.
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Table 2 Approaches to evaluating NEs

Description Advantages/disadvantages Examples

Prepost

Outcomes of interest compared in a
population pre- and postexposure to the
intervention

Requires data in only a single population
whose members serve as their own
controls

Assumes that outcomes change only as a
result of exposure to the intervention

Effect of pesticide import bans and suicide
in Sri Lanka (32)

Regression adjustment

Outcomes compared in exposed and
unexposed units, and a statistical model
fitted to take account of differences
between the groups in characteristics
thought to be associated with variation in
outcomes

Takes account of factors that may cause
both the exposure and the outcome

Assumes that all such factors have been
measured accurately so that there are no
unmeasured confounders

Effect of repeal of handgun laws on
firearm-related murders in Missouri (17)

Effect of a cycle training scheme on
cycling rates in British schoolchildren
(29)

Propensity scores

Likelihood of exposure to the intervention
calculated from a regression model and
either used to match exposed and
unexposed units or fitted in a model to
predict the outcome of interest

Allows balanced comparisons when many
factors are associated with exposure

Assumes that all such factors have been
measured accurately so that there are no
unmeasured confounders

Effect of the Sure Start scheme in England
on the health and well-being of young
children (54)

Difference-in-differences

Change in the outcome of interest pre-
and postintervention compared in
exposed and unexposed groups

Uses differencing procedure to control for
variation in both observed and
unobserved fixed characteristics

Assumes that there are no group-specific
trends that may influence outcomes—the
parallel trends assumption

Effect of traffic policing on road traffic
accidents in Oregon (19)

Effect of paid maternity leave on infant
mortality in LMICs (58)

Interrupted time series

Trend in the outcome of interest
compared pre- and postintervention,
using a model that accounts for serial
correlation in the data and can identify
changes associated with introduction of
the intervention. Change also compared
in exposed and unexposed populations in
controlled time series analyses

Provides a powerful and flexible method
for dealing with trend data

Requires substantial numbers of pre- and
postintervention data points; controlled
time series analyses may not be possible
if the trends in the intervention and
control area differ markedly

Effect of a multibuy discount ban on
alcohol sales in Scotland (64)

Effect of 20-mph zones on road traffic
casualties in London, UK (31)

Synthetic controls

Trend in the outcome of interest
compared in an intervention area and a
synthetic control area, representing a
weighted composite of real areas that
mimics the preintervention trend

Does not rely on the parallel trends
assumption or require identification of a
closely matched geographical control

May not be possible to derive a synthetic
control if the intervention area is an
outlier

Effect of a ban on the use of trans-fats on
heart disease in Denmark (62)

Effect of antitobacco laws on tobacco
consumption in California (1)

(Continued )
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Table 2 (Continued )

Description Advantages/disadvantages Examples

Regression discontinuity

Outcomes compared in units defined by
scores just above and below a cutoff in a
continuous forcing variable that
determines exposure to an intervention

Units with scores close to the cutoff
should be very similar to one another,
especially if there is random error in the
assignment variable; some key
assumptions can be tested directly

Estimates the effects for units with scores
close to the cutoff, which may not be
generalizable to units with much higher
or lower scores on the forcing variable;
there is a trade-off between statistical
power (which requires including as many
people as possible near the cutoff ) and
minimizing potential confounding (by
including only those very close to the
cutoff )

Effect of the Head Start program on child
mortality in the United States (52)

Effects of conditional cash transfers on
rates of overweight/obesity in Mexico (6)

Instrumental variables

A variable associated with exposure to the
intervention, but not with other factors
associated with the outcome of interest,
used to model the effect of the
intervention

An instrumental variable that satisfies
these assumptions should provide an
unconfounded estimate of the effect of
the intervention

Such variables are rare, and not all of the
assumptions can be tested directly

Effect of food stamps on food insecurity
(78)

Effect of community salons on social
participation and self-rated health among
older people in Japan (39)

Abbreviations: LMIC, low- and middle-income countries; NE, natural experiment.

provision of training. The key strength of the study by Goodman et al. is the way the timing of data
gathering in relation to exposure created well-balanced intervention and control groups. Without
this overlap between data gathering and exposure to the intervention, there was a significant risk
that unobserved differences between the groups would bias the estimates, despite adjusting for a
wide range of observed confounders.

Propensity Score–Based Methods

In a well-conducted RCT, random allocation ensures that intervention and control arms are bal-
anced in terms of both measured and unmeasured covariates. In the absence of random allocation,
the propensity score attempts to recreate the allocation mechanism, defined as the conditional
probability of an individual being in the intervention group, given a number of covariates (65).

The propensity score is typically estimated using logistic regression, based on a large number of
covariates, although alternative estimation methods are available. There are four principal ways to
use the propensity score to obtain an estimated treatment effect: matching, stratification, inverse
probability weighting, and covariate adjustment (7). Each method will adjust for differences in
characteristics of the intervention and control groups and, in so doing, minimize the effects of
confounding. The propensity score, however, is constrained by the covariates available and the
extent to which they can collectively mimic the allocation to intervention and control groups.

Understanding the mechanism underlying allocation to intervention and control groups is
key when deriving the propensity score. Sure Start Local Programmes (SSLPs), area-based
interventions designed to improve the health and well-being of young children in England, were an

44 Craig et al.
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example where, on an ITT basis, exposure to the intervention was determined by area of residence
and would apply to everyone living in the area regardless of individual characteristics. Melhuish
et al. (54) therefore constructed a propensity score at the area level, based on 85 variables, to
account for differences between areas with and without SSLPs. Analysis was undertaken on indi-
viduals clustered within areas, stratified by the propensity of an area to receive the SSLP. The most
deprived areas were excluded from the analysis because there were insufficient comparison areas.

Advantages of using the propensity score over simple regression adjustment include the com-
plexity of the propensity score that can be created (through, for example, including higher-order
terms and interactions), the ease of checking the adequacy of the propensity score as opposed
to checking the adequacy of a regression model, and the ability to examine the extent to which
intervention and control groups overlap in key covariates (7, 18), and thereby avoid extrapola-
tion. Although in statistical terms the use of propensity scores may produce results that differ
little from those obtained through traditional regression adjustment (70), they encourage clearer
thinking about study design and particularly the assignment mechanism (66). When membership
of the treatment and control groups varies over time, inverse probability weighting can be used
to account for time-varying confounding (34), as in the study by Pega et al. (59) of the cumulative
impact of tax credits on self-rated health.

Difference-in-Differences

In its simplest form, the DiD approach compares change in an outcome among people who are
newly exposed to an intervention with change among those who remain unexposed. Although
these differences could be calculated from a 2 × 2 table of outcomes for each group at each time
point, the effect is more usefully estimated from a regression with terms for group, period, and
group-by-period interaction. The coefficient of the interaction term is the DiD estimator (Model 2
in Appendix 1).

DiD’s strength is that it controls for unobserved as well as observed differences in the fixed (i.e.,
time-invariant) characteristics of the groups and is therefore less prone to omitted variable bias
caused by unmeasured confounders or measurement error. The method relies on the assumption
that, in the absence of the intervention, preimplementation trends would continue. This common
trends assumption may be violated by differential changes in the composition of the intervention
or control groups or by other events (such as the introduction of another intervention) that affect
one group but not the other. With data for multiple preimplementation time points, the common
trends assumption can be investigated directly, and it can be relaxed by extending the model to
include terms for group-specific trends. With more groups and time points, the risk that other
factors may influence outcomes increases, but additional terms can be included to take account of
time-varying characteristics of the groups.

De Angelo & Hansen (19) used a DiD approach to estimate the effectiveness of traffic policing
in reducing road traffic injuries and fatalities by taking advantage of a NE provided by the state
of Oregon’s failure to agree on a budget in 2003, which led to the layoff of more than one-third
of Oregon’s traffic police force. A comparison of injury and fatality rates in Oregon with rates in
two neighboring states before and after the layoff indicated that, after allowing for other factors
associated with road traffic incidents, such as the weather and the number of young drivers, less
policing led to a 12–14% increase in fatalities. Whereas De Angelo & Hansen’s study focused on
an intervention in a single area, Nandi and colleagues (58) applied DiD methods to estimate the
impact of paid maternity leave across a sample of 20 low- and middle-income countries.

DiD methods are not limited to area-based interventions. Dusheiko et al. (23) used the with-
drawal of a financial incentive scheme for family doctors in the English National Health Service to
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identify whether it led to treatment rationing. Recent developments, such as the use of propensity
scores, rather than traditional covariate adjustment, to account for group-specific time-varying
characteristics, add additional complexity, but combining DiD with other approaches in this way
may further strengthen causal inference.

Interrupted Time Series

Alongside DiD, ITS methods are among the most widely applied approaches to evaluating NEs.
An ITS consists of a sequence of count or continuous data at evenly spaced intervals over time, with
one or more well-defined change points that correspond to the introduction of an intervention
(69). There are many approaches to analyzing time series data (44). A straightforward approach
is to use a segmented regression model, which provides an estimate of changes in the level and
trend of the outcome associated with the intervention, controlling for preintervention level and
trend (43, 75). Such models can be estimated by fitting a linear regression model, including
a continuous variable for time since the start of the observation period, a dummy variable for
time period (i.e., before/after intervention), and a continuous variable for time postintervention
(Model 3 in Appendix 1). The coefficients of these variables measure the preintervention trend,
the change in the level of the outcome immediately postintervention, and the change in the
trend postintervention. Additional variables can be added to identify the effects of interventions
introduced at other time points or to control for changes in level or trend of the outcome due
to other factors. Lags in the effect of the intervention can be accounted for by omitting outcome
values that occur during the lag period or by modeling the lag period as a separate segment (75).
Successive observations in a time series are often related to one another, a problem known as serial
autocorrelation. Unless autocorrelation is addressed, the standard errors will be underestimated,
but models that allow for autocorrelation can be fitted using standard statistical packages.

By accounting for preintervention trends, well-conducted ITS studies permit stronger causal
inference than do cross-sectional or simple prepost designs, but they may be subject to confound-
ing by cointerventions or changes in population composition. Controlled ITS designs, which
compare trends in exposed and unexposed groups or in outcomes that are not expected to change
as a result of the intervention, can be used to strengthen causal inference still further; in addition,
standardization can be used to control for changes in population composition. A common short-
coming in ITS analyses is a lack of statistical power (61). Researchers have published a range of
recommendations for the number of data points required, but statistical power also depends on
the expected effect size and the degree of autocorrelation. Studies with few data points will be
underpowered unless the effect size is large. Zhang et al. (79) and Mcleod & Vingilis (53) provide
methods for calculating statistical power for ITS studies.

Robinson et al. (64) applied controlled ITS methods to commercially available alcohol sales
data to estimate the impact of a ban on the offer of multipurchase discounts by retailers in Scotland.
Because alcohol sales vary seasonally, the researchers fitted models that took account of seasonal
autocorrelation, as well as trends in sales in England and Wales where the legislation did not apply.
After adjusting for sales in England and Wales, the study found a 2% decrease in overall sales,
compared with a previous study’s finding of no impact using DiD methods applied to self-reported
alcohol purchase data.

Synthetic Controls

The difficulty of finding control areas that closely match the background trends and characteristics
of the intervention area is a significant challenge in many NE studies. One solution is to use a
synthetic combination of areas rather than the areas themselves as controls. Methods for deriving

46 Craig et al.
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synthetic controls and using them to estimate the impact of state-, region-, or national-level
policies were developed by political scientists (1–4) and are now being applied to many health and
social policies (8, 9, 17, 30, 45, 62, 67).

A synthetic control is a weighted average of control areas that provides the best visual and
statistical match to the intervention area on the preintervention values of the outcome variable
and of predictors of the outcome. Although the weights are based on observed characteristics,
matching on the outcome in the preintervention period minimizes differences in unobserved
fixed and time-varying characteristics. The difference between the postintervention trend in the
intervention and synthetic control provides the effect estimate. Software to implement the method
is available in a number of statistical packages (2).

Abadie et al. (1) used synthetic controls to evaluate a tobacco control program introduced
in California in 1988, which increased tobacco taxes and earmarked the revenues for other to-
bacco control measures. The comparator was derived from a donor pool of other US states,
excluding any states that had implemented extensive tobacco control interventions. A weighted
combination of five states, based on pre-1988 trends in cigarette consumption and potential con-
founders, formed the synthetic control. Comparison of the postintervention trends in the real
and synthetic California suggested a marked reduction in tobacco consumption as a result of the
program.

The synthetic control method can be seen as an extension of the DiD method, with a number
of advantages. In particular, it relaxes the requirement for a geographical control that satisfies
the parallel trends assumption and relies less on subjective choices of control areas. A practical
limitation, albeit one that prevents extrapolation, is that if the intervention area is an outlier, for
example if California’s smoking rate in 1988 was higher than those of all other US states, then
no combination of areas in the donor pool can provide an adequate match. Another limitation
is that conventional methods of statistical inference cannot be applied, although Abadie et al. (1)
suggest an alternative that compares the estimated effect for the intervention area with the distri-
bution of placebo effects derived by comparing each area in the donor pool with its own synthetic
control.

Instrumental Variables

IV methods address selective exposure to an intervention by replacing a confounded direct measure
of exposure with an unconfounded proxy measure, akin to treatment assignment in an RCT (33).
To work in this way, an IV must be associated with exposure to the intervention, must have no
association with any other factors associated with exposure, and must be associated with outcomes
only through its association with exposure to the intervention (Figure 1).

IVs that satisfy the three conditions offer a potentially valuable solution to the problem of
unobserved as well as observed confounders. Estimating an intervention’s effect using IVs can be
viewed as a two-stage process (Models 5.1 and 5.2 in Appendix 1). In the first stage, a prediction
of treatment assignment is obtained from a regression of the treatment variable on the instru-
ments. Fitted values from this model replace the treatment variable in the outcome regression
(41).

IVs are widely used in econometric program evaluation and have attracted much recent interest
in epidemiology, particularly in the context of Mendelian randomization studies, which use genetic
variants as instruments for environmental exposures (25, 36, 48). IV methods have not yet been
widely used to evaluate public health interventions because it can be difficult to find suitable
instruments and to demonstrate convincingly, using theory or data, that they meet the second
and third conditions above (35, 71). A recent example is the study by Ichida et al. (39) of the
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Figure 1
Directed acyclic graphs illustrating the assumptions of instrumental variable (IV) analysis. (a) The variable Z
is associated with outcome Y only through its association with exposure X, so it can be considered a valid
instrument of X. (b) Z is not a valid instrument owing to a lack of any association with outcome Y. (c) Z is not
a valid instrument owing to its association with confounder C. (d ) Z is not a valid instrument owing to its
direct association with Y.

effect of community centers on improving social participation among older people in Japan, using
distance to the nearest center as an instrument for intervention receipt. Another study, by Yen
et al. (78), considers the effect of food stamps on food insecurity, using a range of instruments,
including aspects of program administration that might encourage or discourage participation in
the food stamp program. Given the potential value of IVs, as one of a limited range of approaches
for mitigating the problems associated with unobserved confounders, and their widespread use in
related fields, they should be kept in mind should opportunities arise (35).

Regression Discontinuity

Age, income, and other continuous variables are often used to determine entitlement to social
programs, such as means-tested welfare benefits. The RD design uses such assignment rules to
estimate program impacts. RD is based on the insight that units with values of the assignment
variable just above or below the cutoff for entitlement will be similar in other respects, especially
if there is random error in the assignment variable (11). This similarity allows the effect of the
program to be estimated from a regression of the outcome on the assignment variable (often
referred to as the running or forcing variable) and a dummy variable denoting exposure (treatment),
with the coefficient of the dummy identifying the treatment effect (Model 4 in Appendix 1).
Additional terms are usually included in the model to allow slopes to vary above and below the
cutoff, allow for nonlinearities in the relationship between the assignment and outcome variables,
and deal with residual confounding.

Visual checks play an important role in RD studies. Plots of treatment probability (Figure 2)
and outcomes against the assignment variable can be used to identify discontinuities that indicate
a treatment effect, and a histogram of the assignment variable can be plotted to identify bunching
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Figure 2
Probability of receiving treatment in fuzzy and sharp regression discontinuity designs. (a) A fuzzy regression discontinuity: probability
of treatment changes gradually at values of the assignment variable close to the cutoff. (b) A sharp regression discontinuity: probability
of treatment changes from 0 to 1 at the cutoff. Source: Reproduced from Moscoe (2015) (57) with permission from Elsevier.

around the cutoff that would indicate manipulation of treatment assignment. Scatterplots of co-
variates against assignment can be used to check for continuity at the cutoff that would indicate
whether units above and below the cutoff are indeed similar (57).

The RD estimator need not be interpreted only as the effect of a unit’s exposure to the program
(treatment) right at the cutoff value (47), but the assumption that units above and below the cutoff
are similar except in their exposure to the program becomes less tenable as distance from the cutoff
increases. Usual practice is to fit local linear regressions for observations within a narrow band on
either side of the cutoff. Restricting the analysis in this way also means that nonlinearities in the
relationship between the forcing and outcome variables are less important. One drawback is that
smaller numbers of observations will yield less precise estimates, so the choice involves a trade-off
between bias and precision.

The above approach works when the probability of a treatment jumps from 0 to 1 at the
cutoff, which is known as sharp RD (Figure 2b). If exposure is influenced by factors other than
the value of the forcing variable, for example because administrators can exercise discretion over
whom to include in the program or because individuals can, to some extent, manipulate their
own assignment, the probability of treatment may take intermediate values close to the cutoff
(Figure 1b) and a modified approach known as fuzzy RD should be applied. This process uses the
same two-stage approach to estimation as does an IV analysis (Models 5.1 and 5.2 in Appendix 1).

One example of a sharp RD design is Ludwig & Miller’s (52) analysis of the US Head Start
program. Help with applications for Head Start funding was targeted to counties with poverty
rates of 59% or greater. This targeting led to a lasting imbalance in the receipt of Head Start
funds among counties with poverty rates above and below the cutoff. Ludwig & Miller used local
linear regressions of mortality on poverty rates for counties with poverty rates between 49% and
69%; the impact of the Head Start funding was defined as the difference between the estimated
mortality rates at the upper and lower limits of this range. They found substantial reductions in
mortality from causes amenable to Head Start but not from other causes of death or in children
whose ages meant they were unlikely to benefit from the program.
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Andalon (6) used a fuzzy RD design to investigate the impact of a conditional cash transfer
program on obesity and overweight. Mexico’s Opportunidades program provided substantial
cash subsidies to households in rural communities that scored below a poverty threshold,
which were conditional on school and health clinic attendance. There were a range of other
ad hoc adjustments to eligibility criteria, creating a fuzzy rather than a sharp discontinuity in
participation at the poverty cutoff. Andalon used two-stage least squares regression to estimate
the effect of eligibility (based on the poverty score) on program participation and the effect of
predicted participation on obesity and overweight. The author found no effect for men but a
substantial reduction in obesity among women. Further testing indicated no bunching of poverty
scores around the cutoff and no significant discontinuity at the cutoff in a range of covariates.
Inclusion of the covariates in the outcome regressions had little effect on the estimates, further
supporting the assumption of local randomization.

RD methods are widely regarded as the closest approximation of an observational study to
an RCT (5), but their real value derives from their wide applicability to the evaluation of social
programs for which eligibility is determined by a score on some form of continuous scale and also
from their reliance on relatively weak, directly testable assumptions. One key shortcoming is that
restricting the bandwidth to reduce bias results in a loss of precision (46, 73), and estimates that
may hold over only a small segment of the whole population exposed to the intervention. This
restriction to a subset of the population may not matter if the intervention is expected to affect
outcomes locally, as in the case of a minimum legal drinking age or if the substantive focus of the
study is on the effect of a small change in the assignment rule. It is more serious when the outcome
of interest is the effect on the whole population.

STRENGTHENING INFERENCE IN NATURAL
EXPERIMENTAL STUDIES

Causal inference can be strengthened in NE studies by the inclusion of additional design features
alongside the principal method of effect estimation. Studies should be based on a clear theoret-
ical understanding of how the intervention achieves its effects and the processes that determine
exposure. Even if the observed effects are large and rapidly follow implementation, confidence
in attributing them to the intervention can be markedly improved by a detailed consideration of
alternative explanations.

Qualitative research can strengthen the design of RCTs of complex public health interven-
tions (10, 56), and this argument applies equally to NEs (38). Qualitative research undertaken in
preparation for, or alongside, NE studies can help to identify which outcomes might change as
a consequence of the intervention and which are priorities for decision makers (42). It can also
improve understanding of the processes that determine exposure, factors associated with inter-
vention delivery and compliance, mechanisms by which outcomes are realized, and the strengths
and limitations of routinely collected measures of exposures and outcomes (13). Qualitative stud-
ies conducted alongside the quantitative evaluation of Scotland’s smoke-free legislation have been
used to assess compliance with the intervention (24) and to identify a range of secondary outcomes
such as changes in smoking behavior within the home (60). Qualitative methods for identifying
the effects of interventions have also been proposed, but further studies are needed to establish
their validity and usefulness (63, 72, 77).

Quantitative methods for strengthening inference include the use of multiple estimation meth-
ods within studies, replication studies, and falsification tests. Tests specific to particular methods,
such as visual checks for discontinuities in RD and ITS studies, can also be used. Good-quality NE
studies typically use a range of approaches. Comparing results obtained using different methods
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can be used to assess the dependence of findings on particular assumptions (50). Such comparisons
are particularly useful in early applications of novel methods whose strengths and weaknesses are
not fully understood (49).

Falsification or placebo tests assess the plausibility of causal attribution by checking for the
specificity of effects. One such approach is to use nonequivalent dependent variables to measure
changes in outcomes that are not expected to respond to the intervention. They serve as indicators
of residual confounding or the effects of other interventions introduced alongside the study inter-
vention. A related approach is to use false implementation dates and to compare changes associated
with those dates with effects estimated for the real implementation date. A similar test used in
synthetic control studies involves generating placebo effects by replacing the intervention area
with each of the areas in the donor pool in turn and then comparing the estimated intervention
effect with the distribution of placebo effects (1, 2).

Most NE studies are conducted retrospectively, using data collected before the study is planned.
Ideally, an analysis protocol, setting out hypotheses and methods, should be developed before any
data analysis is conducted (21). Even when such protocols are published, they do not provide a
perfect safeguard against selective reporting of positive findings. Replication studies, which by
definition retest a previously published hypothesis, are a valuable additional safeguard against ret-
rospectively fitting hypotheses to known features of the data. Reporting of NE studies of all kinds
may also be improved by following established reporting guidelines such as STROBE (Strength-
ening the Reporting of Observational Studies in Epidemiology) (74) or TREND (Transparent
Reporting of Evaluations with Nonrandomized Designs) (28).

CONCLUSIONS

NE approaches to evaluation have become topical because they address researchers’ and policy
makers’ interests in understanding the impact of large-scale population health interventions that,
for practical, ethical, or political reasons, cannot be manipulated experimentally. We have sug-
gested a pragmatic approach to NEs. NEs are not the answer to every evaluation question, and it is
not always possible to conduct a good NE study whenever an RCT would be impractical. Choices
among evaluation approaches are best made according to specific features of the intervention in
question, such as the allocation process, the size of the population exposed, the availability of
suitable comparators, and the nature of the expected impacts, rather than on the basis of general
rules about which methods are strongest, regardless of circumstances. Availability of data also con-
strains the choice of methods. Where data allow, combining methods and comparing results are
good ways to avoid overdependence on particular assumptions. Having a clear theory of change
based on a sound qualitative understanding of the causal mechanisms at work is just as important
as sophisticated analytical methods.

Many of the examples discussed above use routinely collected data on outcomes such as mor-
tality, road traffic accidents, and hospital admissions and data on exposures such as poverty rates,
alcohol sales, and tobacco consumption. Continued investment in such data sources, and in pop-
ulation health surveys, is essential if the potential for NEs to contribute to the evidence base for
policy making is to be realized. Recent investments in infrastructure to link data across policy
sectors for research purposes are a welcome move that should increase opportunities to evaluate
NEs (12, 26, 37). Funding calls for population health research proposals should take a similarly
even-handed approach to specifying which approaches would be acceptable and should empha-
size the importance of developing a clear theory of change, carefully testing assumptions, and
comparing estimates from alternative methods.
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APPENDIX 1: STATISTICAL MODELS FOR NATURAL
EXPERIMENTAL STUDIES

The standard multivariate regression model can be used to estimate the effect of exposure to an
intervention (E) on the outcome (Y ), with adjustment for a measured confounder (X),

Yi = β0 + β1 Ei + β2 Xi + εi . (Model 1)

Terms can be added to adjust for other confounders.
In a DiD analysis, observations are made on different units i at times t and the regression

model includes an additional term for the period (P) in which the observation took place (coded
0 for preintervention or 1 for postintervention), and an interaction term between the period and
exposure, which provides the effect estimate β3:

Yit = β0 + β1 Ei + β2 Pt + β3 Ei × Pt + εi t . (Model 2)

Segmented regression models estimate the baseline level of the outcome, the trend in the outcome
before the intervention, the change that occurs at the point when the intervention is introduced,
and the trend postintervention:

Yt = β0 + β1Ut + β2 Pt + β3Vt + εt , (Model 3)

where U is the time from the start of the observation period, P is again a dummy variable indicating
the preintervention (P = 0) and postintervention (P = 1) periods, and V is the time postinter-
vention. Additional terms can be added to allow for multiple interventions, to model a lag period
postintervention if it takes time for the effects to appear, or to account for serial correlation in the
data.

In a sharp RD analysis, the model includes the forcing variable (Z), and the exposure variable
(E) takes a value of 1 when Z is equal to or greater than the cutoff (C) that determines exposure
and 0 otherwise. In Model 4, β1 provides an estimate of the change in Y at the cutoff, and β2 and
β3 estimate the slope below and above the cutoff. The analysis is usually restricted to values of Z
close to C:

Yi = β0 + β1 Ei + β2 (1 − Ei ) (Zi − C) + β3 Ei (Zi − C) + εi . (Model 4)

Models 1–4 estimate an average treatment effect across the whole exposed population. The two-
stage least squares (2SLS) models used in fuzzy RD and IV studies estimate a complier average
causal effect, i.e., the effect of the intervention on those who comply with their assignment. The
first stage predicts the probability of exposure π , with C representing the cutoff and Z the forcing
variable in an RD analysis and the IV and a confounding variable in an IV analysis:

Ei ∼ Bernoulli (πi ) (Model 5.1)

g (πi ) = β∗
0 + β∗

1 Ci + β∗
2 Zi ,

where g (.) denotes an appropriate link function, e.g., logit, probit.
The second stage uses the expected probabilities from the first stage to provide the effect

estimate, β1:

Yi = β0 + β1π̂i + β2 Zi + εi , (Model 5.2)

where π̂i is the predicted probability of exposure from Model 5.1, e.g., for a logit link,

π̂i = 1

1 + exp
{
−

(
β̂∗

0 + β̂∗
1 Ci + β̂∗

2 Zi

)} .

Note that Model 5.2 includes the forcing variable and any other confounders from Model 5.1.
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21. Dundas R, Ouédraogo S, Bond L, Briggs AH, Chalmers J, et al. 2014. Evaluation of health in pregnancy

grants in Scotland: a protocol for a natural experiment. BMJ Open 4:e006547
22. Dunning T. 2012. Natural Experiments in the Social Sciences: A Design-Based Approach. Cambridge, UK:

Cambridge Univ. Press
23. Dusheiko M, Gravelle H, Jacobs R, Smith P. 2006. The effect of financial incentives on gatekeeping

doctors: evidence from a natural experiment. J. Health Econ. 25:449–78
24. Eadie D, Heim D, MacAskill S, Ross A, Hastings G, Davies J. 2008. A qualitative analysis of compli-

ance with smoke-free legislation in community bars in Scotland: implications for public health. Addiction
103:1019–26
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